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Gravitational Perturbation Induced by an Intense
Laser Pulse

Peiyong Ji,! Shi-tong Zhu,” and Wen-da Shen'
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The energy-level shifts of the hydrogen spectrum in curved spacetime induced
by intense short laser pulses are studied. With present high-power laser pulses
the magnitude of the energy-level shifts of highly excited hydrogen atom should
be detectable.

1. INTRODUCTION

General relativity and some other metric theories predict that gravitation
will cause curved spacetime. Dealing with large-scale spacetime, however,
there are few experiments available for gravitation compared to other interac-
tions. With the development of techniques for high-power lasers, the intensity
of laser pulses can reach the magnitude of the atomic unit (>3 X 10'
Wicm?) and even 10”° W/em?. In addition, present detecting techniques can
provide micrometer space resolution and picosecond time resolution. There-
fore it is feasible to detect the gravitational effect of an intense laser pulse
and find related detecting methods. The gravitational coupling between laser
beams was examined by Scully (1979) via the Einstein—Maxwell equations,
and the amplitude and phase variations of a probe pulse due to a high-
intensity laser pulse were obtained. It was shown by Parker (1980, 1982)
that the energy levels of the atomic spectrum in curved spacetime would be
shifted due to the local space-time curvature. In this paper we study the
energy-level shifts for the hydrogen atom in curved space produced by intense
laser pulses and seek a way to check the validity of the theory of general
relativity.
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2. METRIC INDUCED BY AN INTENSE LASER FIELD

One takes the electromagnetic fields for a laser pulse to have the follow-
ing forms (Scully, 1979):

Ex(r, ) = €(r, 1) sin(®r — kx) (2.1a)

B, 1) = c—vz%(r, ) sin(wr — k) (2.1b)

2_112
Bi(r, 1) = [1 - (f)] z%’—Qcos(ooz ) (2.1c)

where €(r, 7) is the envelope of the pulse, with
&(r, 1) = EFAO((1 + To) — x) — O(vt — x)18(»)8(2) (2.2)

Ey is the amplitude of the pulse, 4 is the section of the beam, v is the velocity
of the pulse, T} is the duration of the pulse, and the step function is

1, x>0
e(x):{o x <0

The gravitational metric can be obtained by solving the Einstein equations

gu(r, 1) = Muv + Ayp(r, 1) (2.3)
where
0 0 0
o -1 0o o0
Ww=30 0 -1 0 24
0o 0 0 -1
and
huv(x, 1) = h(r, )Myy (2.5)
with
2GeoE} A
h(r, 1) = ———5-=
C

o 1 U T0) =X+ [ To) =0 & (1= /e £ )] 06
vt—x+[(vt—x)>+ (1 =)'+ D] :
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and
1 = 0 0
Moo = =it Vet 0 0 27
wv 0 0 0 0 2.7)
0 0 0 (/A — ()
In the short-pulse approximation, (2.6) reduces to
—(260GE§ AvTo/c*
h(r, 1) = (280GEy ATolc) (2.62)

[(x = vd)® + (1 = VIO + )"
Restricted by the uncertainty principle, the section of the laser beam is limited
to the range

A=<y +7=<4

where A4) denotes the minimum section of the laser beam allowed by the
uncertainty principle, and A is the effective section of the beam. Limiting to
geodesic motion along the x direction and substituting into equation (2.6a)
with 41 = ()® + ), one has

—(2e0GE3 AvTy/c?)
[(x — v + (1 — v A"

h(x, t) = (2.6b)

The line element characterizing the spacetime of the short laser is

ds? = (1 + %)cz d — 2c—v3h(c dt) dx

2 2
+ (—1 +v_4h)dx2 — d* + [—1 + (1 —V—z)h—z] d*(2.8)
C C C

Settingx = x — vt,t =t — F(x), y = y, z = z, and selecting F(x) to satisfy
the identity
v + (lehh — (VleYh

= 2.9
= v+ h = 20°Ah + (Vichh (2.9)

S

we find that the coupled term (¢ df) dx disappears and then (2.8) reads

2 2
ds® = (1 —%)[1 - (1 —?) §:|(c dry?

5 -1 2
- (1 - ﬁ) (%) — () - [1 - (1 - v?)ﬂ(d;)z 210

a
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In new coordinates (c7, x, y, z), therefore, the metric components have the

following forms:
2 2
200 = (1 —%)[1 + (1 —v—z)%] (2.11)

]
gn=—[1-5 (2.12)

a
a

C

gn = —1 (2.13)
2
n = — [1 — (1 —?)%] (2.14)

= —2&GE§ ATyl
[+ (1 = i)'

where

(2.6¢)

3. GEODESIC MOTION AND FERMI NORMAL COORDINATES

Taking account of the energy-level shifts of the hydrogen atom in Fermi
normal coordinates (Parker, 1980, 1982), we will examine the geodesic motion
determined by the metric (2.10) and then set up the corresponding Fermi
normal coordinates. The Lagrangian matching the metric (2.10) is

L= (1 —V—j)[l - (1 —V—i) ﬂz_(c?)2
> c c
1 ISR o v\ A=
- (1 —7) =0y -1~ (1 —;) ;](z)2 (3.1

i(a—f)—a—fzo (W=0,1,23) (3.2)

a

and it satisfies



Gravitational Perturbation Induced by an Intense Laser Pulse 1783

Here x* = dx*/(cdt), ds = ¢ dr, and T is the proper time. Solving the
Lagrangian equations, one gets

Co

T = 3.3
CTA = SN+ (1= A (3-3)
y=G (3.4)
- C.
= 3.5
T - = ANE (3-3)
and
H\12 2
x==x(1- v_2 2,2 - 2, 2 5 1
¢ (1 = v/l + (1 — v/e) hieT]
c? 112

() — - 3.6
) 1—@1 - vz/cz)h/cz} (36)

where Co, Cy, and C: are integration constants. The solutions indicate that
the atom acted upon by the gravitational field of the intense laser will move
along a geodesic with velocity X, y, and z.

Taking the velocity along the direction of x, and choosing y and z to be
zero when x — & © (4 — 0), one can get the integrals C, = C. = 0, and
C% = (1 — v*/c*). Therefore equations (3.3) and (3.6) read

- _ +1
“" (1 = VA1 + (1 = VA3 (3.3a)
and
T=+[1 - 2\ (= = viwe )" (3.6a)
@) a = vidwe ~

From equations (3.3a) and (3.6a), the velocity of the particle in the direction
of x can be found as

12

po=dx_ [ _2 —1—v—2ﬂ1/21+ =22 59
Yoedt cz[ & cz:|[ & cz:|('
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and the nonzero components of the affine connection read

0 _ —(1 — v e*xh (3.8)
T+ (1 = VAR + (1 — V) Al '
2, 2\3T
I, = (A = v /lcY'xh (3.9)

2R+ (1 — V) Al

[1L — vYA5h
I =——= 3.10
BT + (1= v A (3.10)

and

_ (1 = VIcAxh
22 4 (1 — v A — (1 — vl

I3 (3.11)

The nonzero components of the Riemann curvature tensors are written as

Rio10 = Ro1o1 = —Rioo1 = —Roiro

1
= (3.12)

—_ v2 ’ V2 h
4c4[x2+ 1 o A1:|[1 + |1 — Z]
- ? - 24, 2
X {4;8(1 —~ v—z)hcz + (3x2 e [t
c h c
,\4
—~ 2(1 —~ v—z)Alhz}
c
R3030 = Rozos = —Rs003 = —Ro33o
v ’
(1 - —2) xn
C
= - (3.13)

2
2

4c4[}2 + (1 —~ v—z)A1:|
C
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Ri313 = R3131 = —R3113 = —Risa

1
—_ v2 ’ V2 h
4c4[x2+ =3 A1:|[1— 1-= 3]
2 2 2
x{4§2(1 —v—z)hcz —~ (3§2+—‘—2A < )(1 —v—z)hz
¢ h ¢
V2 ’
+2(1 ——Z)Alhz}
C

— pl 3
Roo = Ro10 + Rzo

a
a
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(3.15)

(3.16)
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Ry = RYo; + Ri3

1
- - (3.17)
[=. [ B
4c x+1—,2A1 1-— 1—,2 P
c | e
2)\2 2 2\?
(1—%)hc2+2(4‘h‘——§2)(1—v—2)h2
c

X
C
=] P h—3 N Ah—
X 2| 2 2 162

R=R)+R + R

I

1
(3.18)

2\ 14 2\ 4
— 14% (1——)h—+8( vz)A1h_4}
c c c

Along with the geodesic in the direction of x, a Fermi normal basis can be
selected as (Manasse and Misner, 1963)

L _ -0 -0

ey = ct or + x o (3.19)
0 a9

e1 = a o +B o (3.20)

. foi

e = 5 (3.21)

i 71/26
A I A N
o[ ( )] g 522

and, obviously,
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e:(’)ch, eﬁzi el =a, e'_{ZB, é§=1
2\ —1n (3.23)
e§=[1 — (1 —v—z)—z
e
where
—h
o = 3.24
A+ A = VISP (3.24)
and
_ 22
B2 = 1 —vi/c (3.25)

1+ (1 = VA

Riemann curvature tensors in the Fermi normal basis can be correspondingly

written as
Rotoi = Rioio = —Roi1o = —Rioot
1
= 2 N, 2 (3.26)
5 2 24 5 3
X { 2(1 —v—z)hcz + (3;2 —~ —&)(1 —~ Vz)hz
c h c
V2 ¥
2|1 -7 Alhz}
C
Rozo3 = Riozo = —Roz0 = —R3003
1
= (3.27)

B 2 2 2\ 22
—_ )4 v h
4c4|:x2 + (1 _§)A1:| [1 — (1 —;) ?]
vV



1788 Ji, Zhu, and Shen

Ri313 = Rzt = — Rt = —Rans

= . — (3.28)

x(l—v—z)sh—4+4(1—v—) } (3.29)
02 C4 2 .

Ri = Ry + R%i = Rotol — Rizns

2\ 14 2\° 4
- L N/ v n
+ 4% (1 —;) s 2(1 - cz) A 04} (3.30)
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Ry = RY%s + Rlis = Rosns — Rian

2 2\ 4 2\ 4
+ (4&2 - Z—Ah‘L)(l —v—z) b 2(1 —v—z) Al%} (3.31)
c c c c

R=Ry+ Rl + R} =R — Ri1 — Ry

1 _ 2
= - L3222 1 =5
J = v v \r €
4l x + |1 — 2 A 1—11— S|4
c ¢ e
(3.32)
2\? 2V 4 2\0 4
i 2 - i B/ i n
—8(1 — Ah” — 14x°| 1 — + 81 — A

It is obvious that the Riemann curvature scalar in the Fermi normal basis
(3.32) is the same as the identity (3.18).

4. GRAVITATIONAL SHIFTS OF THE ENERGY LEVELS OF
THE HYDROGEN ATOM

Now one can evaluate the gravitational shifts, using the expression
obtained in the previous section for the Riemann curvature tensors in normal
coordinates and the results for hydrogen energy-level shifts (Parker, 1980,
1982). It follows from (2.6b) that A(x, 7), with units of the square of velocity,
gets its maximum value at x> = 0, and one can expect that the energy-level
shifts for the hydrogen atom located at that position would be observable.
Considering h/c* << 1, one can retain the lowest order for /(r, 7) in equations
(3.26)—(3.32) and then the expressions are rewritten, in x> = 0, as
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1 2
Roioi = Rioto = —Rot10 = —Rioor = — (1 - ?)h 4.1)

26%4,

Ro303 = Rso30 = —Roszo = — Raoos = 0 4.2)
Risis = Ryiyi = —Rizi = —R L (-, (4.3)
1313 3131 1331 LRy 2 .

1 v’
Royp =~ 1—=1h 4.4
RPN ( cz) @.4)
Rit =0 (4.5)

1 v’
Rya~=—"—"—|1—=\h 4.6
33 2624, ( cz) (4.6)
R=0 (4.7)

Substituting the above curvature tensors into the expression for the energy-
level shifts (Parker, 1980, 1992)

3
EY = ARy + BR + Z(@""Romf

we obtain

2

EY = ARy + €" Rojo1 = L (1 —§ hsd — 6" (4.8)

2024,

where o4 and €'" are constants that depend on the fine structure constant
and the energy of the electron. For atoms in either highly excited states or
Rydberg states, the energy levels have the forms

k2 1 v?
ED ~25 . [2&41 1 — 2 h:|n4 (4.9)

where o is the fine structure constant, and

EY = —2mnhcRon"? (4.10)

where R, is the Rydberg constant. The ratio of the gravitational shifts to the
differences between successive energy levels is
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ENi — ED ¢ GeoE3AvTy v? v
g0 5.26 X 10 IGW 1 — n®  (4.11)

For present high-power laser techniques involving megajoule energies on a
picosecond time scale, one can choose the following parameters:

T &E ATy =25 X 10°T,  v=09c, n=10

and by considering the restriction due to the uncertainty principle, for a laser
with A ~ 107" m, take 41 = 102> m”. Then we have

AE) —24
m =~ 10 (4.12)
From the literature (Scully, 1979) it is feasible to reach the above sensitivity
by means of present laboratory techniques.

5. SUMMARY AND CONCLUSIONS

We have investigated the gravitational perturbation for the hydrogen
spectrum and estimated the energy output and the traveling velocity of high-
power laser pulses required for observable gravitational effects, and therefore
may have found a probe to check whether Einstein’s gravitational theory is
valid within laboratory dimensions.
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